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Borges’ Library

- Each book is made up of 410 pages, each with 40 
lines, each lines of 80 characters, using 22 letters 
of the alphabet, along with the period, space, and 
comma, for a total of 25 characters.

- Every book is equally likely

40X80X410=1,312,000 characters per book. – 101,834,097 possible books 



Borges’ Library

- Each book is made up of 410 pages, each with 40 
lines, each lines of 80 characters, using 22 letters 
of the alphabet, along with the period, space, and 
comma, for a total of 25 characters.

- Every book is equally likely

- But, is every story equally likely? 

40X80X410=1,312,000 characters per book. – 101,834,097 possible books 

For fun: https://libraryofbabel.info/



Most strings are not compressible
number of binary strings

n=1:  0, 1
n=2:  00, 01, 10, 11
n=3:  000,001,010,011,100,101,110,111
2n strings of length n
2n-2 strings shorter than n

½ of strings compressed by 1 bit
¼ of strings compressed by 2 bits
1/2p “            “              “  p bits

Examples: 
about 1/1000t can be compressed  by 10 bits

1/1,000,000   “          “  by 20 bits
etc…..

Highly compressible strings are extremely rare



Question: If most sequences are 
incompressible, why are most 
patterns we see in nature highly 
compressible?



AN INTUITION:
What is the probability that a monkey types out X digits of π  on an N key typewriter ?

P(X) = (1/N)^(X+1)

But what if the monkey types into C ?
P(X) ≲ (1/N)^133

3.14159265358979323846264338327950288419716939
937510582097494459230781640628620899862803482
534211706798214808651328230664709384460955058
223172535940812848111745028410270193852110555
964462294895493038196442

3.14159265358979323846264338327950288419716939
937510582097494459230781640628620899862803482
534211706798214808651328230664709384460955058
223172535940812848111745028410270193852110555
964462294895493038196442

C program due to Dik Winter and Achim Flammenkamp (See Unbounded Spigot Algorithms for the Digits of Pi, by Jeremy 
Gibbons (Oxford CS), Math. Monthly, April 2006, pages 318-328.) 

133 character (obfuscated) C code to calculate first 15,000 digits of π

2/17/2016 Pi the Number, not the Movie

http://www.cs.utsa.edu/~wagner/pi/pi.html 1/3

Pi the Number, not the Movie

References and digits of Pi:

Here are two excellent references about pi:

The Life of Pi, by J.M. Borwein.
Life of Pi on slides, by J.M. Borwein.

Here are listings of digits of pi to different bases:

pi to 40000 decimal digits, 
pi to 20000 hex digits, 
pi to 10000 base 36 digits,
pi to 10000 base 62 digits (using 0-9,A-Z,a-z).

The May 6, 1993 episode of The Simpsons has the character Apu boast "I can recite pi to 40,000
places. The last digit is one." See the 40000 digits above, where the 40000th one is red. (A colleague
of Borwein actually supplied this information to the Simpson's program: see "Life of Pi on slides"
above.)

The most interesting decimal run in pi starts in position 762 (row 7, column 7), where 9999998 occurs.

Expressions giving an approximation of pi: pi from an expression.

C program giving 15000 digits of pi:

Rabinowitz and Wagon gave an amazing algorithm to compute decimal digits of pi, based on the series
given below. The "algorithm uses only bounded integer arithmetic and is surprisingly efficient.
Moreover, it admits extremely concise implementations. Witness, for example, the following
(deliberately obfuscated) C program due to Dik Winter and Achim Flammenkamp ...." (See
Unbounded Spigot Algorithms for the Digits of Pi, by Jeremy Gibbons, Math. Monthly, April 2006,
pages 318-328.)

C program to calculate 15000 digits of pi The Formula used

a[52514],b,c=52514,d,e,f=1e4,g,h; 
main(){for(;b=c-=14;h=printf("%04d", e+d/f)) 
for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;} 

Output of a run

here (with newlines inserted by hand), or here

This is called a spigot algorithm because it spits out digits as if from a spigot. Other versions of this
program can be found on the Internet. Still, with this method one has to commit ahead of time to a
specific number of digits to calculate. The next method doesn't have this weakness.

Calculating arbitrarily many digits of pi:
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Universal Turing machine (UTM) can simulate anything that is computable.  
FAPP: C, Fortran, Pascal etc… are Turing Complete, with infinite resources 
they can be UTMs

Church-Turing thesis: a function on the natural numbers is computable if and 
only if it is computable by aTuring machine.

Halting Problem: There is no general algorithm that can always determine 
whether a program on a UTM will halt, or keep going on forever.

Entscheidungsproblem:  David Hilbert’s “decision”  problem:   Is mathematics 
decidable: Can an algorithm decide whether any given statement is provable 
from a fixed set axioms using the rules of logic?  Godel & then  Turing & 
Alonso Church proved that the answer is no.

Turing, A.M. . "On Computable Numbers, with an Application to the Entscheidungs
problem". Proceedings of the London Mathematical Society. 2 (1937) 42: 230–265.

Making monkey intuitions quantitative: 
Universal Turing Machines

AlanTuring
1912-1954



Compression & Kolmogorov complexity of a single object 

A.N. Kolgomorov
1903-1987

G.J. Chaitin
1947--

01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

0111010100110010111101111011010100001000101110101010011010111110111010010100011101110110110111010 

Kolmogorov complexity K(X) is the length in bits of the
shortest program on a UTM that generates X

K is universal, (not UTM dependent) because you can 
always write a compiler . For example, if  U and W are 
UTMs, then 

K_U(X) = K_W(X) + O(1) ≈  K(X)

K is not computable due to Halting problem.

new intuitions from AIT
-- A random number is one for which K(X) ≳ |X|
-- The complexity of a set can be << than complexity of elements of the set 
for example, Borges’ library is very simple, even if the book describing your life is not.

asym
ptotically

simple

complex

Warning: you don’t know for sure that it is complex, t could be encoding π= 3.141592653589793238462 …..



Making the monkey intuition quantitative with AIT: 
Algorithmic probability

R. Solomonoff
1926-2009

Intuitively: simpler (small K(X)) outputs are much more likely to appear

Solomonoff, R., "A Preliminary Report on a General Theory of Inductive Inference", Report V-131, Zator Co., Cambridge, Ma. Feb 4, 1960, revision, Nov., 1960.  

PU(X) =
X

l:U(l)=X

2�l = 2�K(X) + ....

K(X)  log2PU(X)  K(X) +O(1)

PU(X)  2�K(X)+O(1)

1

First term is the biggest one

Note: Solomonoff was heavily influenced by Carnap’s program on induction

Sum all binary codes that generate X



L. Levin, 1948 --

L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of probability theory.
Problems of Information Transmission, 10:206–210, 1974. 

A priori probability estimates from structural descriptional? complexity

Kamaludin Dingle1 and Ard A. Louis1

1
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK

(Dated: September 7, 2016)

Many real world systems can be described using finite discrete input-output maps.
If an input is selected at random, what is the probability P (x) that a given map
generates a particular output x? Without knowing details of the map it may seem
hard to do better than a uniform a priori probability for generating any possible
output. Here, by extending fundamental results from algorithmic information theory,
we show instead that for many real world maps, the a priori probability decays
exponentially with the descriptional complexity K(x) of output x, with an upper
bound P (x) . 2�aK(x)�b which is tight for most inputs. The constants a and b and
many other properties, such as the number of outputs, or whether P (x) > P (y) or vice
versa for two di↵erent outputs x and y, can be predicted with only minimal knowledge
of the mapping. We demonstrate the generality of these principles for applications
ranging from the folding of RNA secondary structures to the Black-Scholes equation
from financial mathematics.

Discrete input-output maps are widely used in science and engi-
neering. Many systems are intrinsically discrete, such as mod-
els of the mapping from genotypes to phenotypes in biology, or
networks of Boolean logic functions in computer science. But
discrete maps can also arise by coarse-graining continuous sys-
tems. Examples include di↵erential equations, where the inputs
are discretised values of the equation parameters, and the out-
puts are discretised values of the solutions for a given set of
boundary conditions. Such a wide diversity of possible maps
might at first sight suggest that, without known details of a
particular map, there are no grounds for predicting one output
to be more likely than another. Thus the a priori expectation
for the probability of obtaining a certain output upon random
sampling of inputs would be given by a uniform distribution.

On the other hand, this problem has been studied, albeit in
in a very abstract way, in a field called algorithmic informa-
tion theory (AIT), founded by Solomono↵1, Kolmogorov2 and
Chaitin3,4. Their fundamental insight was to describe the infor-
mation content or descriptional complexity of a discrete object
such as a binary string x in terms of the length of the shortest
program that generates x on universal Turing machine (UTM).
This measure is called the Kolmogorov-Chaitin complexity or
simply Kolmogorov complexity K(x) of x.

One of the many beautiful properties of K(x) is that it is
asymptotically independent of the UTM that is used. More
precisely if we define KU (x) as the the length of the shortest
program that generates x on UTM U , and define KV (x) in an
analogous way for UTM V , then |KU (x)�KV (x)| < M , where
M is a constant independent of x. Very loosely speaking, M
is the length of a program (compiler) that one UTM can use
to simulate the other. This invariance theorem can also be ex-
pressed as KU (x) = KV (x) + O(1). In the asymptotic limit
of large complexities these di↵erences can be neglected (i.e. the
O(1) terms, which are independent of x, can be ignored) and the
subscript U or V is dropped so that we speak simply of K(x)
which is a property of x only. In this way AIT di↵ers funda-
mentally from Shannon information theory because the latter is
fundamentally a statistical theory about distributions, whereas
the former is a theory about the information content of indi-
vidual objects. We provide a longer description of AIT, with
some further technical definitions, in Supplementary Informa-

tion ??. More complete descriptions can be found in standard
textbooks5,6.
Coding theorem connects probability and complexity
Interestingly, the earliest formulation of AIT (by Solomono↵1)
was in terms of the probability P (x) that a UTM generates an
output x upon random input programs. If one assumes that the
probability of generating a binary input program of length l is
simply 2�l (which is true for prefix codes, see Supplementary
Information ??) then the most likely way to obtain output x by
random sampling of inputs is with the shortest program that
generates it, a string of length K(x). Since there may also be
longer input programs that generate x, this provides a lower
bound 2�K(x)

 P (x). Later, Levin’s coding theorem7 also set
an upper bound, and so established a more general connection
between the probability P (x) and the (prefix) Kolmogorov com-
plexity K(x) of the output:

2�K(x)
 P (x)  2�K(x)+O(1) (1)

This fundamental result means that ‘simple’ outputs, with
smaller K(x), have an exponentially higher probability of be-
ing generated by random input programmes for a UTM than
complex outputs with larger K(x) do.

Unfortunately, the direct application of these results from
AIT to many practical systems in science or engineering suf-
fers from a number of well known problems. Firstly, due to
the halting problem8, K(x) is formally incomputable, meaning
that in general there cannot exist any method that takes x and
computes K(x)6. Secondly, many key AIT results, such as the
invariance theorem or the coding theorem, only hold up to O(1)
or logarithmic terms which are unknown, and therefore can only
be proven to be negligible in the asymptotic limit of large K(x)
values. Thirdly, many of the input-output maps from science or
engineering are computable, that is they are not UTMs. Thus
while the results of AIT are extremely general and elegant, it is
not obvious how well they translate to many real world systems.

On the other hand, the intuition behind the coding theorem
– complex outputs are harder to generate by random sampling
of inputs than simpler ones are – seems very general. Moreover,
the prediction is very strong: an exponential decrease in prob-
ability upon a linear increase in complexity. Intuitively, such a
strong relationship might be expected to have influence even in

Making the monkey intuition quantitative with AIT: 
The coding theorem

We should teach this much more widely!

Intuitively: simpler (small K(X)) outputs are much more likely to appear
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tion ??. More complete descriptions can be found in standard
textbooks5,6.
Coding theorem connects probability and complexity
Interestingly, the earliest formulation of AIT (by Solomono↵1)
was in terms of the probability P (x) that a UTM generates an
output x upon random input programs. If one assumes that the
probability of generating a binary input program of length l is
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Information ??) then the most likely way to obtain output x by
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 P (x). Later, Levin’s coding theorem7 also set
an upper bound, and so established a more general connection
between the probability P (x) and the (prefix) Kolmogorov com-
plexity K(x) of the output:

2�K(x)
 P (x)  2�K(x)+O(1) (1)

This fundamental result means that ‘simple’ outputs, with
smaller K(x), have an exponentially higher probability of be-
ing generated by random input programmes for a UTM than
complex outputs with larger K(x) do.

Unfortunately, the direct application of these results from
AIT to many practical systems in science or engineering suf-
fers from a number of well known problems. Firstly, due to
the halting problem8, K(x) is formally incomputable, meaning
that in general there cannot exist any method that takes x and
computes K(x)6. Secondly, many key AIT results, such as the
invariance theorem or the coding theorem, only hold up to O(1)
or logarithmic terms which are unknown, and therefore can only
be proven to be negligible in the asymptotic limit of large K(x)
values. Thirdly, many of the input-output maps from science or
engineering are computable, that is they are not UTMs. Thus
while the results of AIT are extremely general and elegant, it is
not obvious how well they translate to many real world systems.

On the other hand, the intuition behind the coding theorem
– complex outputs are harder to generate by random sampling
of inputs than simpler ones are – seems very general. Moreover,
the prediction is very strong: an exponential decrease in prob-
ability upon a linear increase in complexity. Intuitively, such a
strong relationship might be expected to have influence even in

Making the monkey intuition quantitative with AIT: 
The coding theorem

Serious problems for applying coding theorem more widely

1) Many systems are not Universal Turing Machines
2) Kolmogorov complexity K(x) is formally incomputable
3) Many systems not in the asymptotic limit , O(1) terms…

We should teach this much more widely!



assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

NOTE: upper bound only!

1) Computable input-output map f: I à O
2) Map f  must be simple – e.g. K(f) grows slowly with system size
3) K(x) is approximated, for example by Lempel Ziv compression or some other 

suitable measure
4) Constants a and b depend on mapping only and can be approximated fairly easily.
5) Bound is tight for most inputs, but not most outputs.
6) Maps must be a) simple, b) redundant, c) non-linear, d) well-behaved (e.g. not a 

pseudorandom number generator)

Coding theorem for non-universal maps

K. Dingle, C. Camargo and A.AL,  Nature Communications  9, 761 (2018) 

Kamal Dingle Chico Camargo

(2 Dphils of work)
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Is black line (red dashed with b=0)



Entropy versus KZ complexity

LZ Complexity v.s. Entropy S = p log p + (1-p) log (1-p) for binary strings of length 30



Question: most strings are close 
to maximally complex, Why do 
we see many compressible 
sequences in nature?

Potential answer: -- If patterns are caused by sampling 
algorithms then they will be exponentially biased 
towards low complexity outputs. 



Applications of new coding theorem:

1. Evolution (the arrival of variation is  biased 
towards simple phenotypes)

2. Machine learning with deep neural networks 
(biased towards simple functions)



Protein quaternary structure is self-assembled

Keiichi Namba, Osaka

Physicists should like evolution .. It is the fundamental law of biology

Self-assembly – can we understand, can we emulate?

-- how does evolution design self-assembling structures? 



Self-assembling protein quaternary structure

for all three models share the following general properties:
redundancy (there are many more genotypes than phenotypes)
leading to large neutral sets (the collection of all genotypes that
map to a given phenotype) and phenotype bias (some pheno-
types are associated with many more genotypes than
others). A more fine-grained analysis shows that the neutral
sets also exhibit component disconnectivity (not all genomes in
a neutral set can be linked with single mutational steps). We
proceed with a more detailed comparison of the Polyomino
and RNA systems, through considering shape space covering
(most phenotypes can be reached from any other phenotype
with just a small number of mutations), before showing the
mean mutational robustness of a phenotype (the phenotypic
robustness) scales very roughly logarithmically with the redun-
dancy of a phenotype, and finally that it is positively correlated
with the evolvability (defined here as the number of other pheno-
types potentially accessible from a phenotype), as postulated to
hold more generally by Wagner [30]. Finally, in §4 we discuss
some implications of the remarkable agreement we find
between the structure of our Polyomino GP map and those of
the better studied RNA secondary structure and HP maps.

2. The Polyomino self-assembly model and its
associated genotype – phenotype map

The process of tiling and its connection with computer science
was first developed by Wang [31]. Since then, tiling models

have been shown to be capable of computation and, in particu-
lar, Turing-universal computation under the condition that
cooperative binding is allowed between tiles, demonstrat-
ing the ability of two-dimensional tiling systems to model
computational as well as structure-forming processes [32].
Rothemund & Winfree [33] studied the program size complex-
ity necessary to build a structure of a given size. More general
considerations of the complexity of tiled structures have since
been discussed in [34], with a more biological slant given by
Ahnert et al. [14] and applications to artificial biological
systems discussed by Rothemund et al. [28].

Here, rather than focusing on these tiles as potential comput-
ing devices or as models for complexity, we explore how they can
be used to understand the GP map of a specific biological system,
namely the self-assembly of finite-sized protein structures.
Nevertheless, we are aware that some of our conclusions may
have applications for a wider class of systems.

We now proceed with a more detailed description of the
Polyomino model as a GP map.

2.1. Summary of the Polyomino genotype –
phenotype map

The genotype is modelled as a character string representation
of a set of Nt tiles which make up an assembly kit. The edges
of each tile in the assembly kit are given a number which rep-
resents the interface type. Interactions between interface types
are defined via an interface interaction matrix Aij. In our work

biological

RNA secondary
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protein tertiary
structure

protein quaternary
structure

B

AB B

A

BA
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model

(b)

(a)
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Figure 1. A comparison of how three different biological structures may be represented in a corresponding model system. Row (a) compares a version of the iconic
hammerhead ribozyme (PDB reference 1RMN [21]) with its secondary structure representation (showing the bonding pattern of nucleotides) produced by the Vienna
RNA package [22] shown alongside. The orange, blue and green colours in each part represent the bonded stems in the structure. Row (b) depicts a cartoon of the
tertiary structure of a single chain of length 21 (chain A) from an insulin protein (PDB reference 1APH [23]) which is compared to a schematic HP lattice protein
interpretation on the right. The orange and blue colours are used to demonstrate the structural feature of a-helices in the pictures. Finally in row (c), we show a
protein complex (PDB reference 1BKD [24]) alongside a polyomino representation. The orange and blue colours represent the different subunits involved in the
protein. The ability of the polyomino representation to capture the C4 symmetry of 1BKD is apparent from the rotation of the labelling on the subunits.
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Polyomino model:
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Deterministic self-assembly:
Always the same shape no 
matter what order you put 
blocks down



There are 13,079,255 16-ominoes
Output of evolutionary runs:

Evolve to find rules to make 16-ominoes 
Output is highly biased:
21 shapes =50% of genotypes 

Iain Johnston



There are 13,079,255 16-ominoes
Output of 109 evolutionary runs:

Complexity measured as minimum information 
Is needed to specify the assembling structure

Symmetry spontaneously emerges from algorithmic nature of evolution

Only 5 D4 symmetry 16-ominoes,
But they take up 35% of all genotypes

assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)
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Richard Dawkins’ Biomorphs
Figure 8: Complexity vs Neutral Set Size for a full enumeration of genes 1-8 between -3 and 3
and gene 9 between 1 and 8. The complexity was estimated from the coding section of the most
compressible genotype mapping to a given phenotype. The red line indicates the upper limit for a
general input-output map [1].

Figure 9: Complexity vs Neutral Set Size for a full enumeration of genes 1-8 between -3 and 3
and gene 9 between 1 and 8. The phenotype complexity was estimated from the LZ compression
of the coding section of the most compressible genotype mapping to a given phenotype. The red
line indicates the upper limit for a general input-output map [1]. The datapoints are binned as
a 2-dimensional histogram and coloured by the maximum full-genotype complexity (estimated by
LZ compression of the whole genotype) for all phenotypes in a given region of the log(NSS) vs
Complexity plane. This confirms the predictions by [2]: phenotypes far from the upper bound (red
line) are only generated by low-complexity genotypes.
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Applications of new coding theorem:

1. Evolution (the arrival of variation is highly 
biased)

2. Machine learning with deep neural networks 
(biased towards simple functions)
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inputs to the output. The neuron's output,  or , is determined by
whether the weighted sum  is less than or greater than some
threshold value. Just like the weights, the threshold is a real
number which is a parameter of the neuron. To put it in more
precise algebraic terms:

That's all there is to how a perceptron works!

That's the basic mathematical model. A way you can think about the
perceptron is that it's a device that makes decisions by weighing up
evidence. Let me give an example. It's not a very realistic example,
but it's easy to understand, and we'll soon get to more realistic
examples. Suppose the weekend is coming up, and you've heard
that there's going to be a cheese festival in your city. You like
cheese, and are trying to decide whether or not to go to the festival.
You might make your decision by weighing up three factors:

1. Is the weather good?
2. Does your boyfriend or girlfriend want to accompany you?
3. Is the festival near public transit? (You don't own a car).

We can represent these three factors by corresponding binary
variables , and . For instance, we'd have  if the weather
is good, and  if the weather is bad. Similarly,  if your
boyfriend or girlfriend wants to go, and  if not. And similarly
again for  and public transit.

Now, suppose you absolutely adore cheese, so much so that you're
happy to go to the festival even if your boyfriend or girlfriend is
uninterested and the festival is hard to get to. But perhaps you
really loathe bad weather, and there's no way you'd go to the festival
if the weather is bad. You can use perceptrons to model this kind of
decision-making. One way to do this is to choose a weight  for
the weather, and  and  for the other conditions. The
larger value of  indicates that the weather matters a lot to you,
much more than whether your boyfriend or girlfriend joins you, or
the nearness of public transit. Finally, suppose you choose a
threshold of  for the perceptron. With these choices, the
perceptron implements the desired decision-making model,

w1

w2

w3

Regarding 1), it was originally thought that regularization methods such as Tikhonov regularization
[10], dropout [11], or early stopping [12] were key in providing this inductive bias. However, Zhang
et al. [13] demonstrated that highly-expressive deep neural networks still generalize successfully
with no explicit regularization, reopening the question of the origin of the inductive bias. There is
now more evidence that unregularized deep networks are biased towards simple functions [14, 15].
Stochastic gradient descent has been conjectured as a possible cause of the bias [16, 17], but the true
origin of the bias is still unknown [14].

The experiments by Zhang et al. [13] also clearly demonstrated point 2), which spurred a wave of
new work in learning theories tailored to deep learning [8, 18, 19, 20, 21, 22], none of which has yet
successfully explained the observed generalization performance.

In this paper, we address the problem of generalization by deep neural networks in the over-
parametrized regime. We apply insights from Dingle et al. [23] who demonstrated empirically
that a wide range of input-output maps from science and engineering exhibit simplicity bias, that is,
upon random inputs, the maps are exponentially more likely to produce outputs with low descriptional
complexity. The authors trace this behavior back to the coding theorem of Solomonoff and Levin [24],
a classic result from algorithmic information theory (AIT). By deriving a weaker form of the coding
theorem valid for non-Turing universal maps (see also [25]) and by providing practical complexity
measures, they overcome some key difficulties in the application of the original AIT coding theorem.
The mapping between parameters of a deep neural network and the function that it encodes fulfills
the key conditions for simplicity bias (See Appendix B). Thus we expect that for a random set of
input parameters, the probability that a particular function is encoded by the deep neural network will
decrease exponentially with a linear increase in some appropriate measure of the complexity of the
function. The main aim of this paper is to empirically test whether or not deep neural networks exhibit
this predicted simplicity bias phenomenology, and to determine whether or not this bias explains their
generalization performance.

The paper is organized as follows. In Section 2, we provide empirical evidence – for a deep network
implementing Boolean functions – that the probability that a randomly chosen parameter set generates
a particular function varies over many orders of magnitude. As predicted by simplicity bias, the
probability decreases exponentially with the increased complexity of the Boolean function. In
Section 3, we show empirically for a standard supervised learning framework that deep neural
networks generalize much better when learning simpler target Boolean functions than unbiased
learners do, even when both learners achieve zero training set error. In Section 4 we rationalize the
link between simplicity bias and generalization by deriving explicit PAC-Bayes bounds which are
shown to work well in several experiments. In Section 5 we present empirical results for networks
trained on the CIFAR10 database showing that deep networks have a stronger simplicity bias than
shallow networks do, which may explain why deep networks tend to generalize better than shallow
ones. In the final section we provide a broader context for our results, arguing that simplicity bias
provides a key theoretical ingredient for explaining the remarkable generalization properties of deep
neural networks.

2 Bias in the parameter-function map

To empirically study bias in the parameter-function map, we consider feedforward neural networks
with p real-valued parameters, n-dimensional Boolean inputs, and a single Boolean output. The
advantage of using a system with discrete functions is that it makes sampling the probability that a
function obtains upon random selection of parameters more feasible (In Section 5, we also explore
networks with continuous inputs and many more parameters.). For more details of our implementation,
see Appendix A. With this setup, the parameter-function map M is defined as:

M : Rp ! {0, 1}2
n

✓ 7! f✓

where f✓ is the function produced by the network with parameters ✓. We can investigate the structure
of this mapping empirically, by randomly sampling ✓ according to a fixed distribution. We use uniform
distributions, with variances fixed as in Xavier initialization [26] (other choices of distribution and
variance were also explored, see Appendix C.3). We define the probability of a function as the

2



CIFAR-10 dataset

Deep Neural Networks excel at pattern recognition

1) Train on a training set to fix the parameters
2) Test on a test set to see how well you 

predict unseen data 
3) How well you do  on unseen data is called 

generalization



2 Deep neural networks learn low-complexity solutions

In general, supervised learning usually involves an optimization process of minimizing the empirical
risk, Remp(f) := 1

N

PN
i=1 `(f(xi), yi),

f̂ = argminf2H
Remp(f), (1)

where {(xi, yi)}Ni=1 denotes the training set with N i.i.d. samples, `(·, ·) is the loss function; H

denotes the whole hypothesis space, and the hypothesis f is often parameterized as f(x;✓), such
as deep neural networks. According to central limit theorem (CLT), the generalization error (i.e.
the population version of risk) of one particular learned model f̂ , R(f̂) = Ex,y[`(f̂(x), y)], can be
decomposed into two terms

R(f̂)  Remp(f̂) +
q

Varx,y`(f̂(x), y)/
p

N, (2)

where the last term is closely related to the complexity of the solution f̂ , i.e. the complexity of
input-output mapping f̂ . So with the same and small training error, simple solutions generalize
better than complex solutions. This intuitive explanation is called Occam’s razor, and No Free Lunch
theorem [20] and also related to the minimum description length (MDL) theory [18, 15].

2.1 Optimizers converge to low-complexity solutions

In deep learning, Remp can always be trained to an ignorable threshold ✏. So it is the complexity
of candidate solutions that determine the generalization error according to the bound (2). To get
some intuition about this, we use fully connected neural networks (FNN)1 with different number of
layers to fit a three-order polynomial: y = x3

� 3x2
� x+ 1 + N (0, 0.1). As a comparison, we also

conduct the experiment using kernel ridge regression (KRR) model. In this experiment, training set
consists of only 5 points. For neural networks, all the regularizers are removed; and the regularization
parameter for KRR is set to 0.01. The result is summarized in Figure 1. we can easily observe that

Figure 1: (Left), fitting results for 5 data points using FNNs with different number of layers; the overfitting
solution with a high complexity (in dashed line) is intentionally constructed. (Right), fitting results by kernel
regression with different orders of polynomial kernels.

the optimizer did converge to the solutions with low complexity for FNNs with different number of
layers. Especially, the 12-layer network still generalizes well, even with about 18000 parameters
that is much larger than the size of training set. Maybe one thinks that it is because the hypothesis
space of FNN is not as complicated as we imagine. However, this is not true; and we can find many
high-complexity solutions, one of them shown as the dash line in Figure 1. The overfitting solution in
the figure can be found by attacking the training set intentionally, see Section 5.1 for more details.
On the other hand, KRR inevitably produces overfitting solutions when increasing the capacity. To
control the complexity of the solutions for KRR models, we have to resort to some regularization.

2.2 Connection with classical learning theory

Classic statistical learning theory describes the generalization error bound for the hypothesis space H

as follows (we present it in a non-rigorous way for simplicity),

R(f)  Remp(f) + complexity(H)/
p

N, 8f 2 H, (3)
1ReLU is used as our activation function through all the experiments in this paper
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Neural networks are highly over-parameterized:  number of parameters >> number of data points

Understanding deep learning requires rethinking generalization, Zhang et al, arXiv:1611.03530 (2016)

Randomizing labels still leads to zero training error for a DNN , but no generalization … 

-- DNNs are very expressive (they can fit almost anything)

AI researchers allege that machine learning is alchemy
M Hutson - Science, 2018



DNN parameter-function map: If we randomly sample parameters θ, 
how likely are we to produce a particular function f?

(a) Probability versus rank of each of the functions
(ranked by probability)

(b) Probability versus Lempel-Ziv complexity

Figure 1: Probability versus versus (a) rank and (b) complexity, estimated from a sample of 108
parameters, for a network of shape (7, 40, 40, 1). Points with a frequency of 10�8 are removed for
clarity because these suffer from finite-size effects (see Appendix D). The parameter-function map is
highly biased towards functions with low complexity. See Appendix C.3 for similar plots using other
complexity measures.

fraction of parameter samples which produced a given function. With enough samples, this empirical
estimate should approximate the true probability that a random set of parameters will produce a given
function.

In Figure 1a, we show a typical probability versus rank plot for a network with an input layer of 7
nodes, two 40 node hidden layers, and a single output node. We empirically found that this network
can encode almost all possible Boolean functions with high probability, by training it to perfectly fit
1000 Boolean functions chosen uniformly at random from all possible Boolean functions, and finding
that it succeeded in perfectly recreating all of them. There are in principle up to 2128 ⇡ 3.4⇥ 1038

possible functions. If the functions were all equally likely, then their probabilities would be 2�128,
so with a sample of this size (108) it would be exceedingly unlikely to find the same function more
than once. However, as can be clearly seen in Figure 1a, some functions have orders of magnitude
higher probability than a naive uniform estimate would suggest. We observe the same behaviour for
all network architectures which we tried (see Appendix C.3)

By measuring the complexity of the functions produced by the neural network, we can uncover a
second pattern: there is a bias towards simple functions. This correlation is illustrated in Figure 1b.
The functions can be represented as binary strings of length 2n, with each bit corresponding to the
output for an input (see Appendix A) to which we apply the Lempel-Ziv (LZ) complexity measure
of reference [23], which is based on the LZ-76 algorithm [27]. In Appendix C.3, we show that
the same correlation obtains for other complexity measures, including the entropy of the string, as
well as non-string based measures such as the critical sample ratio of Ref. [14], the generalization
complexity of Ref. [28], and a Boolean expression complexity measure based on the length of the
shortest Boolean representation of a function. See Appendix C for a description of these measures.

The shape of the distributions in Figure 7 is similar to those found for a much wider set of input-output
maps by Dingle et al. [23]. Very briefly, for maps satisfying a number of simple conditions, most
notably that the complexity of the map grows slowly with increasing system size, they argue that the
probability P (x) that a particular output x obtains upon random sampling of inputs can be bound by:

P (x)  2�aK̃(x)+b, (1)

where K̃(x) is an approximation to the uncomputable Kolmogorov complexity K(x), and a and b are
constants, typically within an order of magnitude of 1, that depend on the map and the approximation
method used for K̃(x), but not on x. This bound is motivated by and similar in spirit to the full AIT
coding theorem of Solomonoff and Levin [24], but is easier to apply in practice. Dingle et al. [23]
also show that P (x) is expected to be close to the upper bound, with high probability, when x is
the result of an input sampled uniformly at random. They find that this bound holds remarkably
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Model problem for a 7 bit string,  study  all Boolean functions f.
There are 27 =128 different strings, and 2128⋍1034 different functions. 
You might  expect a 1/1034 chance of finding any function. 
Instead, we find strong simplicity bias.

108 samples of parameters for (7,40,40,1) vanilla fully connected DNN system.
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Test of generalization under supervised 
learning;

(a) Target function LZ complexity: 38.5 (b) Target function LZ complexity: 164.5

Figure 2: Generalization error versus learned function LZ complexity, for 500 random initialization
and training sets of size 64, for a target function with (a) lower complexity and (b) higher complexity.
Generalization error is defined with respect to off-training set samples. The blue circles and blue
histograms correspond to the (7, 40, 40, 1) neural network, and the red dots and histograms to an
unbiased learner which also fits the training data perfectly. The histograms on the sides of the plots
show the frequency of generalization errors and complexities. Overlaid on the red and blue symbols
there is a black histogram depicting the density of dots (darker is higher density).

always 2n�m functions consistent with the training set. Because the number of simple functions
will typically be much less than 2n�m, for a simple enough target function, the functions consistent
with the training set will include simple and complex functions. Because of simplicity bias, the
low-complexity functions are much more likely to be considered than the high complexity ones. On
the other hand, for a complex target function, the functions consistent with the training set are all
of high complexity. Among these, the simplicity bias does not have as large an effect because there
is a smaller range of probabilities. Thus the network effectively considers a larger set of potential
functions. This difference in effective hypothesis class causes the difference in generalization. This
intuition is formalized in the next section, using PAC-Bayes Theory.

4 PAC-Bayes generalization error bounds

In order to obtain a more quantitative understanding of the generalization behaviour we observe,
we turn to PAC-Bayes theory, an extension of the probably approximately correct (PAC) learning
framework. In particular, we use Theorem 1 from the classic work by McAllester [32], which gives a
bound on the expected generalization error, when sampling the posterior over concepts. It uses the
standard learning theory terminology of concept space for a hypothesis class of Boolean functions
(called concepts), and instance for any element of the input space.
Theorem 1. (PAC-Bayes theorem [32]) For any measure P on any concept space and any measure
on a space of instances we have, for 0 < �  1, that with probability at least 1� � over the choice
of sample of m instances all measurable subsets U of the concepts such that every element of U is
consistent with the sample and with P (U) > 0 satisfies the following:

✏(U) 
ln 1

P (U) + ln 1
� + 2 lnm+ 1

m

where P (U) =
P

c2U P (c), and where ✏(U) := Ec2U ✏(c), i.e. the expected value of the general-
ization errors over concepts c in U with probability given by the posterior P (c)

P (U) . Here, ✏(c) is the
generalization error (probability of the concept c disagreeing with the target concept, when sampling
inputs).
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DNN does a much better job learning simpler functions than on complex functions 
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Generalization performance gets worse for 
more complex functions

Figure 4: Comparison of expected generalization error bounds from PAC-Bayes (black dots) to
measured error from Fig. 3a, for a network of shape (7, 40, 40, 1), For each target function, the
network is trained on 250 random training sets of size 64, and for each training we run advSGD with
400 random initializations.

P (c) for each of these functions using their complexity K̃(c) as described on Section 2. Then,
because B ⇢ U , P (U) � P (B), we can make the approximation:

P (U) � P (B) ⇡
X

c2B

2�aK̃(c)+b

Because the functions in B are most likely going to be among the functions in U with highest P (c),
this bound could be reasonably tight, if the bias is strong enough. We used a ⇡ 0.38 and b ⇡ 0
by fitting an upper bound to the probability versus Lempel-Ziv complexity plot (Fig. 1b). We can
furthermore repeat the experiment for several training sets and average the resulting generalization
error bounds to obtain an expected error bound over training sets. The resulting bounds can be seen
in Fig. 4, for a range of target function complexity values. The upper bound (black circles) bounds
the generalization error of the functions learned by the neural network, and is relatively tight. The
network was trained using advSGD. Appendix Fig. 18 shows qualitatively similar results for SGD.

One disadvantage of the Pac-Bayes theorem above is that it provides a bound on the expectation of
the error, while generalization bounds in learning theory typically hold with high probability. To
obtain better bounds holding w.h.p., we would need to bound the variance of the error, which we
leave for future work. We also note that a number of the steps above could be improved, especially
the estimates for P (B), but overall, even with these approximations, the bound works well.

5 Deep versus shallow networks

In ref. [34], it is demonstrated that shallow neural networks with sufficient number of parameters can
learn to mimic a deeper network and reach comparable accuracy in an image classification task using
the CIFAR10 dataset, demonstrating that the shallow network has enough expressivity to solve this
task. However, when training directly on the training data, the deep network succeeds in finding a
function with high generalization accuracy, while the shallow network fails. We explored whether
the parameter-function map could be the cause of this difference by biasing the deeper network
towards simpler functions. In Figure 5 we see that, measuring complexity using the critical sample
ratio (CSR) from [14], when randomly sampling parameters the deeper network produces simple
functions much more often than the shallow function, demonstrating a stronger simplicity bias in the
parameter-function map of the deep network. This could explain why the deep network generalizes
better when trained on the CIFAR10 data, even though both networks have enough expressive power.
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Using bias to calculate PAC-Bayes bounds for CIFAR and MNIST

Under review as a conference paper at ICLR 2019

(a) for a 4 hidden layers convolutional network (b) for a 1 hidden layer fully connected network

Figure 2: Mean generalization error and corresponding PAC-Bayes bound versus percentage of
label corruption, for three datasets and a training set of size 10000. Note that the bounds follow the
same trends as the true generalization errors. The empirical errors are averaged over 8 initializations.
The Gaussian process parameters were �w = 1.0, �b = 1.0 for the CNN and �w = 10.0, �b = 10.0
for the FC.

MNIST fashion-MNIST CIFAR
Network Mean

error
Bound Mean

error
Bound Mean

error
Bound

CNN 0.023 0.144 0.071 0.192 0.320 0.664
FC 0.031 0.190 0.070 0.208 0.341 0.730

Table 1: Mean generalization errors and PAC-Bayes bounds for the convolutional and fully con-
nected network for 0 label corruption, for a sample of 10000 from different datasets.

Note that if P (U) didn’t change, then the error would drop with 1/m It drops more slowly because
increasing m also decreases P (U) because fewer functions are compatible with a larger training set.

5 THE CHOICE OF VARIANCE HYPERPARAMETERS

One limitation of our approach is that it depends on the choice of the variances of the weights and
biases used to define the equivalent Gaussian process. Most of the trends shown in the previous
section were robust to this choice, but not all. For instance, the bound for MNIST was higher than
that for fashion-MNIST for the fully connected network, if the variance was chosen to be 1.0.

In Figures 7 and 6 in Appendix C, we show the effect of the variance hyperparameters on the bound.
Note that for the fully connected network, the variance of the weights �w seems to have a much
bigger role. This is consistent with what is found in Lee et al. (2017). Furthermore, in Lee et al.
(2017) they find, for smaller depths, that the neural network Gaussian process behaves best above
�w ⇡ 1.0, which marks the transition between two phases characterized by the asymptotic behavior
of the correlation of activations with depth. This also agrees with the behaviour of the PAC-Bayes
bound. For CIFAR10, we find that the bound is best near the phase transition, which is also com-
patible with results in Lee et al. (2017). For convolutional networks, we found sharper transitions
with weight variance, and an larger dependence on bias variance (see Fig. 7 in Appendix C). For our
experiments, we chose variances values above the phase transition, and which were fixed for each
architecture.

The best choice of variance would correspond to the Gaussian distribution best approximates the
behaviour of SGD. We measured the variance of the weights after training with SGD and early
stopping (stop when 100% accuracy is reached) from a set of initializations, and obtained values an
order of magnitude smaller than those used in the experiments above. Using these variances gave
significantly worse bounds, above 50% for all levels of corruption.
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(a) Target function LZ complexity: 38.5 (b) Target function LZ complexity: 164.5

Figure 2: Generalization error versus learned function LZ complexity, for 500 random initialization
and training sets of size 64, for a target function with (a) lower complexity and (b) higher complexity.
Generalization error is defined with respect to off-training set samples. The blue circles and blue
histograms correspond to the (7, 40, 40, 1) neural network, and the red dots and histograms to an
unbiased learner which also fits the training data perfectly. The histograms on the sides of the plots
show the frequency of generalization errors and complexities. Overlaid on the red and blue symbols
there is a black histogram depicting the density of dots (darker is higher density).

always 2n�m functions consistent with the training set. Because the number of simple functions
will typically be much less than 2n�m, for a simple enough target function, the functions consistent
with the training set will include simple and complex functions. Because of simplicity bias, the
low-complexity functions are much more likely to be considered than the high complexity ones. On
the other hand, for a complex target function, the functions consistent with the training set are all
of high complexity. Among these, the simplicity bias does not have as large an effect because there
is a smaller range of probabilities. Thus the network effectively considers a larger set of potential
functions. This difference in effective hypothesis class causes the difference in generalization. This
intuition is formalized in the next section, using PAC-Bayes Theory.

4 PAC-Bayes generalization error bounds

In order to obtain a more quantitative understanding of the generalization behaviour we observe,
we turn to PAC-Bayes theory, an extension of the probably approximately correct (PAC) learning
framework. In particular, we use Theorem 1 from the classic work by McAllester [32], which gives a
bound on the expected generalization error, when sampling the posterior over concepts. It uses the
standard learning theory terminology of concept space for a hypothesis class of Boolean functions
(called concepts), and instance for any element of the input space.
Theorem 1. (PAC-Bayes theorem [32]) For any measure P on any concept space and any measure
on a space of instances we have, for 0 < �  1, that with probability at least 1� � over the choice
of sample of m instances all measurable subsets U of the concepts such that every element of U is
consistent with the sample and with P (U) > 0 satisfies the following:

✏(U) 
ln 1

P (U) + ln 1
� + 2 lnm+ 1

m

where P (U) =
P

c2U P (c), and where ✏(U) := Ec2U ✏(c), i.e. the expected value of the general-
ization errors over concepts c in U with probability given by the posterior P (c)

P (U) . Here, ✏(c) is the
generalization error (probability of the concept c disagreeing with the target concept, when sampling
inputs).
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An algorithmic view of the world:
Why is the world simple? 

Algorithmic information theory, via the coding theorem,  implies an 
exponential bias towards simplicity

Possibility spaces are not searched uniformly.

This may explain Occam’s razor.

Every book is equally likely,
but every story is not


